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• Differences in ultra-localized air pollu-
tion levels were quantified in urban
areas.

• Buses, mopeds, trucks showed 30–40%
higher than avg. particle number con-
centrations.

• Parks, green spaces showed 22% lower
than average particle number concen-
trations.

• Avoiding high, mixed vehicle traffic
density on main roads would reduce
PNC exposure.
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Air pollution is a global challenge causing millions of premature deaths annually. This is limited not only to de-
veloping, but also developed nations, with cities in particular struggling to meet air quality limit values to ade-
quately protect human health. Total exposure to air pollution is often disproportionately affected by the
relatively short amount of time spent commuting or in the proximity of traffic. In this exploratory work, we con-
ducted measurements of particle number concentrations using a DiscMini by bicycle. Eighteen tracks with ac-
companying video footage were analyzed and a suite of factors classified and quantified that influence
exposure to air pollution. A method was developed to account for variations in the ambient average concentra-
tions per trip that allowed for comparison across all tracks. Large differences in ultra-localized air pollution levels
were identified and quantified for factors such as street type, environmental surroundings, and vehicle type. The
occurrence of one or more non-passenger car vehicles, including e.g., buses, mopeds, or trucks, result in an in-
crease in particulate concentrations of 30% to 40% relative to the average ambient level. High traffic situations,
such as traffic jams or cars waiting at traffic lights, result in increased particulate concentrations (+47% and
+35%, respectively). Cycling in residential neighborhoods decreased particulate number concentrations by 17%
relative to the ambient average level, and by 22% when cycling through green spaces or parks. Such information
is valuable for citizenswhomaywant to reduce their air pollution exposurewhenmoving through a city, but also
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for policy makers and urban planners whomake or influence infrastructure decisions, to be able to reduce expo-
sure and better protect human health, while progress is made to reduce air pollution levels overall.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Air pollution is currently one of the foremost environmental health
problems. The Global Burden of Disease Study estimated that 4.2million
premature deaths resulted from outdoor air pollution in 2015
(Landrigan et al., 2018). The adverse health implications from air pollu-
tion exposure are particularly critical in urban areas, which are popula-
tion centers, but also hotspots for emissions, in particular those
originating from traffic. In Europe, 82–85% of the urban population
was exposed to ambient air pollution concentrations of PM2.5 (particu-
latematterwith an aerodynamic diameter of 2.5 μmor less) that exceed
the World Health Organization (WHO) guidelines from 2013 to 2015
(EEA, 2017). Exposure and health effects are often assessed using air
pollution data from fixed urban background monitoring stations. A
number of studies have shown however, that such monitoring station
data leads to significant underestimates of the exposure of population
subgroups, or in some cases shows little to no associationwith exposure
at all (deNazelle et al., 2017; Gulliver and Briggs, 2004; Kaur et al., 2007;
Ragettli et al., 2013), indicating the need for investigation of more real-
istic levels of pollutant exposures. Furthermore, the larger size fractions
of PM, such as PM2.5 and PM10 (particulate matter with an aerodynamic
diameter of 10 μmor less) have been found to be poor indicators of traf-
fic emissions for studies examining exposure (Boogaard et al., 2009;
Kingham et al., 2013), while a number of studies all consistently found
that particle number concentration (PNC) or ultrafine particles (UFP)
are far better indicators for local traffic-related air pollution than PM2.5

or PM10 (Boogaard et al., 2009; Kaur et al., 2007; Kingham et al.,
2013). Despite this limitation, far more studies evaluating differences
in commuting environments/transport modes have looked at PM mass
concentrations rather than PNC (Karanasiou et al., 2014). Evidence
also indicates that exposure to UFP (the dominant fraction contributing
to PNC) is related to significant adverse health effects (Delfino et al.,
2005). Finally, a significant part of air pollution exposure can occur dur-
ing commuting or time spent in transit through cities. Specifically, ele-
vated levels of pollutants in transport microenvironments may
contribute significantly to daily total exposure despite the short period
of time (Chaney et al., 2017; Karanasiou et al., 2014; Kaur et al., 2007;
Michaels and Kleinman, 2000; Ragettli et al., 2013; Weichenthal et al.,
2011). For example, Dons et al. (2012) found that while only 6% of
time was spent in transport, it accounted for 21% of personal exposure
to black carbon and ca. 30% of inhaled dose. Associations of in-traffic ex-
posure to particle number and soot to changes in lung function have
also been found (Zuurbier et al., 2011).

A growing number of studies look at exposure to air pollutants and
the variation between different transit modes (e.g., car, bus, bicycle,
walking), including the difference in exposure between direct and alter-
native routes. There are substantial differences in the findings among
these studies. For example, some studies found that commuters in mo-
torized modes (car, bus, and/or motorcycle) experienced higher expo-
sure to pollutants such as PM2.5, black carbon, and PNC relative to
pedestrians or cyclists (Kingham et al., 2013; Morales Betancourt
et al., 2017), while other studies identified higher exposure to the
same pollutants while cycling relative to driving (Good et al., 2016;
Okokon et al., 2017). While other studies found a mix, with generally
the highest exposure for the car transport mode, and the lowest for pe-
destrians, with bus and bicycle transportmodes in themiddle of the ex-
posure range for PM2.5 and UFP (Kaur et al., 2007). In some cases, the
exposure level was found to be pollutant dependent (Good et al.,
2016). These differences show a need for greater understanding of
what factors influence the differences in exposure that are being
observed.

Many of these studies, however, consider only exposure and not
dose. And despite lower exposure, results showed that a higher dose
can result owing to higher inhalation rates for active transport modes
such as walking or cycling (Morales Betancourt et al., 2017). This result
is consistent across a number of studies, including those that identified
higher exposure for car drivers or bus passengers, emphasizing the im-
portance of considering inhalation rates (de Nazelle et al., 2012; Int
Panis et al., 2010; Ramos et al., 2016). However, studies have also
shown that the beneficial effects of increased physical activity far out-
weigh the potential mortality effect of increased air pollution doses
and traffic accidents (de Hartog et al., 2010; Tainio et al., 2016). Addi-
tional societal benefits owing to the reductions in air pollution, green-
house gas emissions and traffic accidents were also found. The
majority of these studies emphasize the need for separation of cyclists
from motorized vehicle traffic, or at minimum, routes that facilitate re-
duced traffic volume, to foster a beneficial shift in mobility and reduc-
tion in exposure.

A number of studies have also evaluated the differences in route and
the implications for cycling exposure. Overall, these studies found that
taking alternative routes to avoid main roads, riding off-road rather
than on-road, or in bicycle lanes on sidewalks rather than mixed traffic
lanes, all result in reduced exposure to air pollutants such asUFP, PM, BC
and CO (Good et al., 2016; Kingham et al., 2013; Morales Betancourt
et al., 2017; Ragettli et al., 2013; Thai et al., 2008). The study by Good
et al. (2016) however, also noted that while alternative cycling routes
with reduced traffic may result in lower exposure of some pollutants,
many multi-use cycle paths (those paths that are not contiguous with
a roadway) that would likely result in more substantial reductions in
exposure, are not practical for many users (e.g., too out of the way, ex-
tends the trip distance). Such considerations are important when de-
signing cycle infrastructure and considering the implications for
exposure.

While it is important that further studies are conducted to better un-
derstand exposure to air pollution across transit modes, studies that in-
vestigate the factors that influence the air pollutant concentration a
person is exposed to during transit are far more limited – typically to
a characterization of traffic density (Zagury et al., 2000; Zhu et al.,
2002). In a review paper by Kaur et al. (2007), factors influencing per-
sonal exposure concentrations in the urban transport microenviron-
ment were discussed, such as distance from roadways, traffic density,
andmeteorological conditions. Findings showed that gradients in pollu-
tion (vertical and horizontal) resulted in lower concentrations of air pol-
lutants as the distance from the roadside increased. Meteorological
influences, such as increased wind speed resulted in decreased expo-
sure, and wind direction will affect the sources influencing a location
(Kaur et al., 2007; Thai et al., 2008). A handful of studies were
highlighted that observed relationships between traffic count or traffic
density and particle number concentrations (Kaur et al., 2006, 2007;
Zhu et al., 2002 and references therein). In one of the few studies to
quantitatively assess predictor variables' associations with particle
number concentration, Boogaard et al. (2009) identified passing vehi-
cles, waiting for traffic lights, passing through intersections, and bicycle
lanes/paths close to motorized traffic as factors that significantly pre-
dicted PNC variability during cycling in a study across 11 cities in the
Netherlands.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In this exploratory study our research questions were (1) what fac-
tors influence particle number concentrations that we are exposed to?
(2) can we quantify the amount of influence such factors have on expo-
sure during transit through urban environments using bicyclemeasure-
ments? To address these questions we developed new methods for
application to this dataset of diverse bicycle routes to systematically
and quantitatively evaluate the variables that lead to higher or lower
levels of particle number concentration, in a manner that is directly rel-
evant to exposure in urban environments. This study includes variables
such as amount of traffic, but goes beyond to evaluate variables such as
road type, presence of different vehicle types, and local environment,
among others. Such information is valuable for citizens who may want
to reduce their exposure when moving through a city, but also for city
governments and others who make or influence infrastructure deci-
sions, to be able to reduce exposure and better protect human health,
while progress is made to reduce air pollution levels overall.

2. Methods

The data were collected in the metropolitan area of Berlin and Pots-
dam in the context of a larger measurement campaign including sta-
tionary and mobile measurements carried out in the summer (June
through August) of 2014 (Bonn et al., 2016; von Schneidemesser et al.,
2018). Measurements of particle number concentration were collected
during bicycle trips,manyofwhichweremorning or evening commutes
on commonly used cycling routes through the two cities. In addition to
the PNC measurements, video documentation of the routes was col-
lected, which allowed for evaluation and identification of the suite of
variables. The unique combination of information allowed for a number
of questions to be addressed including the importance of local areas
(park, residential neighborhoods, etc.) and the proximity to specific po-
tential sources of pollution including buses, trucks, and cars. Techniques
were developed to analyze the data which included video analysis and
statistical methods to identify average ambient concentrations. Varia-
tions in these analytical methods were applied to assess the robustness
of the results.

2.1. Particle number concentration measurements

Particle number concentration measurements were collected using
a DiSCmini (Matter Aerosol AG, Switzerland). The DiSCmini is designed
to detect particle number concentrations using a charged equilibrium in
the size range of 10–300 nm (modal diameter) with an impactor for
particle size cut off at ca. 700 nm, and is capable of capturing a linear sig-
nal for the concentration range between 103 and 106 particles cm−3. For
further instrument details, please see Kaminski et al. (2013). Studies
comparing the DiSCmini to condensation particle counter (CPC) instru-
ments have shown good agreement and indicated that theDiSCmini can
appropriately be used for personal exposure studies (Kaminski et al.,
2013; Meier et al., 2013; Mills et al., 2013; Viana et al., 2015). This com-
parison includes similar deployment set-ups as in this work, on mobile
platforms in outdoor environments including traffic environments,
where the data from a DiSCmini and two CPC instruments were found
to be highly correlated for particle number and average particle size,
with differences in total particle counts attributed to the difference in
size ranges that were instrument specific (Meier et al., 2013). For exam-
ple, a field comparison showed good agreement (r2 values generally
over 0.8) and 10–18% relative mean difference for PNC between a
DiSCmini and a CPC (Viana et al., 2015). The DiSCmini was placed in a
backpack (on occasion a bike pannier) with a tube extending out of
the bag to provide the inlet for sampling ambient air. The sampling
height therefore depended on the bicycle and cyclist's set-up, but was
generally 1.0 ± 0.25 m above the ground. Previous work found that
the vibrations owing to the implementation of the instrumentwhile cy-
cling did not have an effect on the measurement coefficient of variation
(Gerwig and Wirtz, 2015). An inter-comparison experiment using
ambient air sampling was carried out two months prior to the start of
the campaign, where the DiSCmini was compared to a TSI CPC Model
3772. This DiSCmini showed good agreement with the CPC with an r2

of 0.99. Furthermore, performance checks were carried out by compar-
ing the DiSCmini to a TSI CPC Model 3776 directly before and after the
measurement campaign, and to a TSI NSAM 3550 before, midway, and
after the measurement campaign. These checks (carried out between
22.5.2014 and 21.5.2015) showed good comparability between the
DiSCmini and the TSI NSAM 3550 and CPC 3776 of 82–100% (average
87% ± 9% SD, n = 7) and 56–76% (average 65% ± 12% SD, n = 6), re-
spectively. The differences in particle size detection limit for the CPC
3776 (Dp N 2.5 nm), NSAM 3550 (10 b Dp b 1000 nm), and DiSCmini
(10 bDp b 700 nm) are reflected in the comparability numbers. The par-
ticulate data were evaluated to determine their statistical behavior. QQ-
plots showed that the data behaved in a log-normal manner and thus
data were natural logged before using them in the study to assure
high concentrations did not have an excessive impact on the conclu-
sions. The data were also tested for autocorrelation, and, as expected
showed autocorrelation for both 1 s data (original resolution) and 30 s
averages (e.g., Fig. S3); the effect of autocorrelation was included in
the estimates of standard error on means and differences. Data from
all tracks showed a mean particle number concentration of 7680 parti-
cles cm−3 (median 7020 particles cm−3) with a standard deviation
range from 3260 to 18,070 particles cm−3 based on the log-
normalized data.

All bicycle routes covered in this study are shown in Fig. 1. The
routes shown were part of a larger set of mobile measurements includ-
ing further cycling measurements, as well as measurements by van, air
plane and glider as depicted in Bonn et al. (2016). The bicycle routes in-
cluded a variety of environments and road types, that ranged fromwide,
paved cycle paths that traversed through forested areas, to cycle paths
that either shared a bus lane, were part of the road but as a separate
bike lane, or shared the sidewalk, typical constellations for cycle paths
on main roads with higher traffic, to routes through residential streets
with lower traffic where no specific cycle path is designated, and routes
that included urban parks, often on gravel or otherwise unpaved paths.

2.2. Cycle routes and video data classification

During themobile bicyclemeasurements a GarminVIRB EliteHDAc-
tion Camera with GPS was enabled to capture the route, environmental
surroundings, and emissions sources (mainly cars, trucks, buses, and
other traffic influences) that could influence the particlemeasurements.
The camera was mounted on the cyclist's handlebars. Video data from
approximately onemonth of cyclingwas analyzed at one second resolu-
tion. In total, 18 cycle tracks were included in the analysis. The 18 cycle
tracks took place between 11 June and 3 July 2014, on weekdays, with
the exception of one track on a Saturday. The time of day for the tracks
was between 7:00 and 10:30 (local time) for 7 tracks, between 16:30
and 21:30 for 9 tracks, and between 13:00 and 14:00 for 2 tracks, one
of which was the track on Saturday. Routes were not prescribed, but
typically followed commuting routes of the cyclists. Cycle track duration
ranged from 45min to 3 h,with an average duration and standard devi-
ation of 1 h 31 min ± 34 min. This corresponded to tracks that ranged
from 7.7 to 35 km in length (23 ± 9.3 km). In some cases, owing to in-
strument or video malfunction, data for the entire duration of the track
were not available. These tracks are not included in this study. The
DiSCmini measurements and video evaluation were matched via time
stamp that was checked prior to each cycling route to ensure consistent
time stamps.

The video data were evaluated for a variety of variables that could
potentially influence the particle number concentrations. The following
variable categories were evaluated: presence of the number of different
types of vehicles (referred to as the ‘event’ variables), traffic density, en-
vironment, street type, and cycling location. The event category in-
cluded eight variables, such as passenger car, bus, moped, etc. and was



Fig. 1.Map of all cycle track routes included in the analysis presented here.
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classified by ‘occurrence’ or counts that reflected the number of vehicles
in the frame. The environment category included eight variables to pro-
vide detailed information as to the environment the cyclist was passing
Table 1
Video analysis variable categories.

Variable Category code Category description

Environment (ENV) ENV_STREET On street/road, whether marked as a cycle p
ENV_TRAFLIGHT Waiting when traffic lights are red
ENV_TRAFJAM Passing by/in a traffic jam, includes approach
ENV_INTERSEC Crossing an intersection
ENV_TUNNEL Cycling through a tunnel, underpass or unde
ENV_BRIDGE Crossing a bridge (over water or another roa
ENV_CRTYARD Coming out of or going into a courtyard/back
ENV_PARK Cycling in park/larger green space not direct

Street type (ST) ST_MAINRD Urban street/road, including multi-lane thor
ST_PARK Cycle road through a park/larger green space
ST_RESID Cobblestone (smaller) streets or otherwise r
ST_OTHER Park, parking, pedestrian, or backyard, (not a

Cycling Location (CL) CL_STREET On street (no cycle path marked)
CL_SIDEWK On the sidewalk (sealed surface)
CL_STRPATH Marked cycle path on the street
CL_OTHERSL Path not on roadside, sealed surface
CL_OTHERNSL Other (e.g. dirt roads, with unsealed surface

Traffic density (TD) TD_NO No traffic

TD_LOW
Low traffic: at least 1 vehicle in picture, vehi
picture before the next one appears

TD_MED Medium traffic: ca. 3–5 vehicles; vehicles pa
TD_HIGH High traffic: 5 or more vehicles; vehicles pas

Events
(occurrence of
vehicle types)

CAR Based on the presence of these vehicle types
cars; CAR_1 indicating the presence of 1 car;

BUS

Based on the presence of these vehicle types
indicating that there are no buses present or
*Vintage or older vehicle, in Berlin this can in
correspond to higher emissions

MOPED
MCYCLE
(motorcycle)
MEDVEH (medium
vehicle)
TRUCK
(semi-truck)
OT (‘old timer’)*
GS (gas station)
through,whether this was e.g., an on road cycle lane, stopped at a traffic
light, or passing through a tunnel. Further details to variable classifica-
tions in each category are provided in Table 1.
ath or not, not size dependent, includes small crossings (only when light is green)

ing red traffic lights with waiting vehicles

r a bridge
d)
yard/parking area
ly next to a road
oughfares
(mainly Kronprinzessinenweg)

esidential streets
roadway)

and gravel)

cles pass sporadically; one or two vehicles have passed or almost passed out of the

ss by at a higher frequency
s close behind each other, continuous dense traffic flow
in the video frame; the following categories exist: CAR_0, indicating the absence of
CAR_2 indicating the presence of 2 or more cars

in the video frame; for all variables the categories e.g., BUS_0 and BUS_1 exist,
that there are 1 or more buses present.
clude old Trabant vehicles that are used for tours, generally would expect this to
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2.3. Data analysis

Owing to the time intensity of the associated video data classifica-
tion, only a subset of the cycle tracks (18 tracks of 85 total tracks)
from the three month campaign were analyzed and included in this
study. To ensure enough data points across the event variable catego-
ries, such as bus, truck, moped, etc. higher occurrence classifications
were combined. For example, as shown in Fig. S1, there were 2887
counts for BUS_1 (indicating the presence of 1 bus). However, for
BUS_2 (indicating 2 buses) or BUS_3 (indicating 3 or more buses),
there were only 271 and 16 counts, respectively. These higher occur-
rence classifications (e.g., BUS_2 and higher) were combined with
BUS_1, to simply indicate whether or not buses were present in the
video frame, as the amount of occurrences in the event variable catego-
ries of N1 were typically limited. For the bus case, considering only oc-
currence categories 1 through 4 (excluding BUS_0 where no buses
were present), categories 2 through 4 were only 9%, of which count 2
contributed 8.5%. For a number of the other categories, counts of 2 or
more were even fewer (see Fig. S1 for all occurrences by variable cate-
gory). Among the environment variable, the STREET classification was
the most common by a good margin, with 69% of the total counts. The
second most common was PARK with 13% of the total counts. This is
consistentwith the street type classifications, with the largest classifica-
tion being main roads (67%), 14% of the total counts streets passing
through parks, and 8.6% residential streets (Fig. S1).
Fig. 2. Box andwhisker plot of particle number concentrations by variable category classification
the first and third quartiles of the data, the upper and lower limits of the whiskers extends to 1
median extend 1.58*IQR/sqrt(n) and indicate a ca. 95% confidence interval around themedian.
confidence intervals around the median are sufficiently visible.
Video classification data for the variables were matched to particle
number concentration data using two different approaches to under-
stand the temporal matching of potential particle source information
and particle concentrations. The match options were (1) a straightfor-
ward match of video analysis and measurement by time stamp at the
original one second resolution, (2) an average of the particle number
concentration data to an interval of 30 s, with the time stamp reflecting
the mid-point of the averaging time, matched to the highest classifica-
tion for occurrence-based video category classifications (e.g., traffic in-
tensity), or the most frequently occurring classification for other
variables (e.g., environment) over the associated 30 s time period. The
two approaches were used to assess whether there was an offset be-
tween the classification information from the video and the particle
concentrations measured. The 30 s time period was chosen to have suf-
ficient length to account for a possible offset for particle concentrations
beingmeasured before or after their emissions sourcewas visible in the
video, while not being so long in duration that too much distance was
covered and too many different classifications included. Match option
1, with the highest temporal information, was considered the primary
assessment method.

For each approach, the video data were evaluated for frequency
counts for each variable and the corresponding categories (see SI
Fig. S1), and were compared with the particle number concentration
by variable category using box and whisker plots (Fig. 2), prior to log-
normalization.
, prior to log-transforming the data. The lower and upper bounds of the box correspond to
.5*IQR (inter-quartile range), all points beyond those are outliers. The notches around the
The y-axis scale shown is consistent across all variable categories and is limited so that the
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To account appropriately for ambient conditions, we evaluated
different methods for establishing average ambient concentrations – a
type of background – for each track. This facilitated comparisons of
data across tracks, andwas needed to account for the influence of mete-
orology, which would have a strong influence on the particle number
concentrationmeasured on any particular day, as well as general differ-
ences in the regional background level of particulate air pollution. The
primary method for establishing the average ambient level (AA1) for
each track was based on the mean particle concentration measured
under the environment variable category ENV_STREET (on street/
road/cycle path), with traffic density (TD) levels of 0 or 1 (no
(TD_NO) or low (TD_LOW) traffic), see Fig. S4. Previous work has
showed that mobile measurements at locations with low traffic
intensity are useful for the determination of the background concentra-
tions (Van Poppel et al., 2013). In this case, a stationary background
site with equivalent PNC measurements was not available for back-
ground correction. Furthermore, given the differences in location of
the routes, a more local background correction was found to be most
appropriate. Three options were tested for background correction,
including a mean of all the data, ENV_STREET, and ENV_STREET
+TD_NO+TD_LOW. While the options for background correction
were quite similar (see Fig. S10), the choice of ENV_STREET+TD_NO
+TD_LOWwas chosen as the optionmost similar to urban background.
Furthermore,we chose not to use amean of all the data as the amount of
data points in e.g., high traffic environments or low traffic environment
(parks) varied from route to route and could result in an over- or under-
estimation in the background correction. The ENV_STREET+TD_NO
+TD_LOW mean value was then subtracted from the data for that
track and the residuals were used for completing the analysis. This
allowed for the assessment of the effect of e.g., highly trafficked condi-
tions or the presence of buses, relative to the average ambient level
across all tracks that were analyzed. We refer to this value as the aver-
age ambient level rather than e.g., urban background, as these were de-
termined for each track and to distinguish them from the urban
background levels measured at stationary monitoring sites within the
city as part of the regulatory air quality network. A meaningful compar-
ison to the urban background concentrations measured in the regula-
tory network is challenging and beyond the scope of this paper owing
to the difference in instrumentation, size fraction, and unit (mass vs
PN) measured. The residuals were then combined across all tracks and
evaluated. An alternative method for determination of the average am-
bient level (AA2) was also evaluated, which used a loess-fit (span =
0.5) to the environment variable category ENV_STREET data only
(Fig. S4) which allowed us to account for the variation in ambient con-
ditions throughout the duration of a track more explicitly.

3. Results

All 18 cycle tracks included in the analysis, showed amedian particle
number concentration of 7020 particles cm−3 with a standard deviation
around the mean from 3260 to 18,070 particles cm−3 based on the log-
normalized data. By comparison, the median PNC for all tracks, includ-
ing those for which video evaluationwas not carried out, was 7480 par-
ticles cm−3 with a standard deviation around the mean from 3020 to
15,880 particles cm−3, indicating consistency in the dataset. The overall
particle number concentration for all tracks and all variable classifica-
tions before the natural log application and any average ambient con-
centration subtraction are summarized in Fig. 2. The patterns in the
box and whisker plots show reasonable relationships between particle
number concentration and e.g., event variables such as the number of
cars, buses, and trucks, as well as for traffic density, where concentra-
tions increased as the number of vehicles increased. The relationships
identified are robust in that they hold regardless of matching method
(see Fig. S2 for the 30 s average match, compared to Fig. 2 for the direct
timematch). Furthermore, the notches on the box andwhisker plots in-
dicate a 95% confidence interval for comparing the median values. That
is, if the extent of the notches around themedian does not overlap from
one variable category to the next, this is an indication of a statistically
robust difference in terms of the median concentrations between the
categories compared. For example, themedian concentrationmeasured
in the case of no buses (BUS_0) is shown to be statistically significantly
lower than those cases where one or two buses (BUS_1, BUS_2) were
identified as present. The variable categories with fewer occurrences
have much larger confidence intervals around the median. For variable
categories within e.g., environment, the categories are not ordered;
there is no increasing or decreasing relationship that evolves from the
first category to the last that would be expected. There are however,
some statistically significant differences in median values observed be-
tween e.g., those categories related to green spaces (ENV_CRTYARD or
ENV_PARK) and those related to high traffic conditions
(ENV_TRAFLIGHT, ENV_TRAFJAM). The large number of high PNC
values beyond the top of the whiskers in these plots (outliers) is indic-
ative of the log-normal distribution that has yet to be accounted for in
the Figure.

Analysis evaluating the relationship between street type and the
event variables was also carried out. These results show that of the
total street type data points collected, two thirds (67%) were identified
as main roads; among the street type data, the occurrence of 1 or more
buses, mopeds,motorcycles, medium vehicles, and trucks is largely only
on main roads (87–97%). Considering only the data points in one street
type category, there were negligible occurrences (b1%) of all event oc-
currences for residential streets, except medium vehicles which were
1.3% of counts, and 1 or more cars, which were 10% of counts. Of the
total counts for parks (ST_PARK), only 2.5% of counts were 1 or more
buses, 3.3% were medium vehicles, and 4.9% were trucks. Among
the counts for main roads (ST_MAINRD), cars, buses, medium vehi-
cles, and trucks were present for 64%, 6.4%, 11%, and 7.2% of data
points. The occurrences in parks are owing to the fact that a number
of cycle routes that pass through small neighborhood parks are just
inside the park boundary along a street, or because of streets that in-
tersect with bicycle routes going through larger parks that are not di-
rectly alongside a street. In addition, there were occurrences of
maintenance vehicles (medium vehicles or trucks) for a number of
the tracks that included a frequently used bicycle path through a
larger forested area between Potsdam and Berlin. For more informa-
tion, see the histograms in Fig. S8.
3.1. Residuals by variable categories relative to the ambient average level

Results presented here reflect the PNC data that were matched
with video data evaluated for the suite of variables, such as presence
of different vehicle types, traffic density, environment, etc. To com-
pare across routes and days an ambient average PNC for each route
and day was determined and subtracted. Variations in themethodol-
ogy were assessed and found to be robust. For more details, see the
methods section.

Fig. 3 shows the results from the variable categories of the particle
number concentration residuals (i.e. after average ambient concentra-
tion subtraction and application of the natural log). The residuals are
presented with error bars representing 1.96 times the standard error,
the 95% confidence intervals of the data, indicating statistically signifi-
cant differenceswhere these do not overlapwith zero or among the dif-
ferent categories. All values including confidence intervals and n-values
are summarized in Table 2. Among the event variables, it is shown
that relative to zero cars (CAR_0), which is significantly below the
average ambient level (−14%), the presence of cars (CAR_1 or
CAR_2), indicates an increase in the amount of particle pollution
measured at each step, for CAR_1 (12%) and CAR_2 (32%) as
indicated by their positive residuals. The average ambient level was
calculated based on the environment variable classification
ENV_STREET, with the traffic density variable including TD_NO or



Fig. 3.Mean log particle number concentration residuals by variable category for all tracks after subtraction of the ambient average. Results are from the primary method (direct video
matching and AA1). Residuals indicate a change in terms of percent difference from the ambient average concentration. Error bars indicate the 95% confidence interval of the mean.

697E. von Schneidemesser et al. / Science of the Total Environment 688 (2019) 691–700
TD_LOW (no or low traffic) in an effort to capture an average ambi-
ent air pollution level for each cycle track.

The same pattern is true for buses, medium-sized vehicles (smaller
trucks), mopeds, motorcycles, and trucks (larger trucks, e.g., semi-
trucks), with a significant increase in the amount of particles measured
in the presence of one or more of these vehicles; the increase relative to
the average ambient level ranged from 30% to 41%. Furthermore, the in-
crease tends to be of a greater magnitude than that of CAR_1, and in
some cases alsomore than CAR_2. Asmost of the values indicating pres-
ence originate from only one e.g., bus or truck, being identified in the
video (≥86%), this indicates that the particulate pollution originating
from these types of vehicles tends to be higher than that of passenger
cars. Finally, a similar pattern is also observed for the traffic density var-
iable. Where no traffic was observed (TD_NO), the residuals are 11%
below the average ambient level. For all other traffic densities
(TD_LOW, TD_MED, TD_HIGH), the results show significant increases
in the calculated residuals, increasing from 16% to 46% above the aver-
age ambient level. These results are qualitatively logical; however, this
study allows the quantification of the impact of higher traffic on pollu-
tion experienced by pedestrians and bicyclists due to increased traffic.

In terms of the environment variable, the residuals are only slightly
(4%) above the average ambient concentrations for cycling on the street
or path along a road (ENV_STREET). Given that this was part of the av-
erage ambient determination criteria, but limited to low or no traffic
conditions, this result is reasonable and reflects the presence of the
higher traffic conditions that were included for this residual calculation.
In comparison, thedatawhere the cyclistwas approaching or stopped at
traffic lights, in or passing a traffic jam (ENV_TRAFLIGHT and
ENV_TRAFJAM), as well as crossing a street (ENV_INTERSEC) or cycling
through a tunnel (ENV_TUNNEL), all show elevated particle number
concentrations relative to the average ambient level, with increases of
28% to 47% (Table 2). In contrast, those data where the environment
variable was related to vegetated areas, parks/courtyards/backyards
(ENV_CRTYRD) and parks/green spaces (ENV_PARK), showed de-
creases in PNC relative to the average ambient of −45% and −22%,
respectively.

The residuals for the street type variable showed higher than aver-
age ambient particle number concentrations for the categories of
urban streets, which included larger, multi-lane streets within the city
(ST_MAINRD, 19%), and lower particle number concentrations for resi-
dential streets (including cobblestone streets which generally include
only non-main roads) (ST_RESID, −17%) relative to the average ambi-
ent. In addition, for the cases where the cyclist was no longer on a
road or path, but rather in a park, in a pedestrian area, or backyard
(ST_OTHER) residuals below the average ambient were quantified
(−23%), which is comparable to ENV_PARK (−22%) and ST_PARK
(−27%). Finally, in terms of the cycling location variable, cycling on
the street (the cyclist is part of vehicle traffic, either on main or res-
idential streets where no cycle infrastructure is marked: CL_STREET,
12%) or on marked on-street cycle paths (CL_STRPATH, 32%) led to
positive residuals, while cycle paths that were part of a shared side-
walk (CL_SIDEWK,−11%), as well as those not roadside with either a
sealed surface (CL_OTHERSL, −30%) or non-paved paths
(CL_OTHERNSL, −20%), showed residuals below the average ambi-
ent level. We hypothesize that the greater residual observed for the
marked on-street cycle path (CL_STRPATH) relative to the lower re-
sidual observed for cycling on the street without any markings
(CL_STREET) is related to the size of the street and associated traffic
density, where those streets with marked cycle paths are more
highly trafficked.



Table 2
Residuals relative to the estimated ambient average over all tracks by variable category.
Data shown are for the primary methods applied (direct matching and AA1).

Variable category N Mean residual
(%)

95% C.I.
(%)

ENV_STREET 46,526 4.0 0.70
ENV_TRAFLIGHT 4503 35 2.2
ENV_TRAFJAM 3361 47 2.9
ENV_INTERSEC 1901 38 3.8
ENV_TUNNEL 296 28 9.4
ENV_BRIDGE 1022 2.5 4.4
ENV_CRTYARD 1035 −45 4.8
ENV_PARK 8925 −22 0.88
ST_MAINRD 45,297 19 0.73
ST_PARK 9804 −27 1.4
ST_RESID 5836 −17 1.4
ST_OTHER 6709 −23 0.82
CL_STREET 18,697 12 1.1
CL_SIDEWK 8430 −11 1.2
CL_STRPATH 5983 32 2.2
CL_OTHERSL 5129 −30 1.4
CL_OTHERNSL 1589 −20 1.7
TD_NO 26,488 −11 0.73
TD_LOW 16,921 16 1.2
TD_MED 14,464 38 1.3
TD_HIGH 1918 46 3.8
CAR_0 36,018 −14 0.68
CAR_1 8167 12 1.7
CAR_2 23,461 32 1.0
BUS_0 64,470 3.4 0.58
BUS_1 3176 39 2.7
MOPED_0 67,016 4.8 0.57
MOPED_1 630 38 7.7
MCYCLE_0 66,867 4.8 0.57
MCYCLE_1 779 30 6.2
MEDVEH_0 62,185 2.1 0.58
MEDVEH_1 5461 39 2.4
TRUCK_0 63,869 3.0 0.58
TRUCK_1 3777 41 2.9
OT_0 67,502 5.0 0.57
OT_1 144 43 16
GS_0 67,129 4.9 0.57
GS_1 517 26 6.9
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3.2. Robustness of results

While the results discussed above (and presented in Fig. 3) are from
the application of the directmatch video-datamatchingmethod, an ad-
ditional matching method was also evaluated, whereby 30 s average
data was used. Furthermore, an alternative background subtraction
method (loess fit) was also evaluated (AA2). Overall, the different
choices in both matching method and background subtraction method
show results that are very consistent with those already presented.
While small differences in the magnitude of the residual results exist,
owing to the application of the various method choices, the overall pat-
terns and main messages from the results remain consistent. For a de-
tailed discussion of the evaluation of the variations in methodology,
please see Text S1.

In addition, given that the routes were not prescribed and occurred
at different times of day, we did an analysis to compare the results of
the primary method (direct match, AA1) for subsets of the data that in-
cluded only routes during themorning hours (7:00 and 10:30; 7 tracks)
to those during evening hours (16:30 and 21:30; 9 tracks). While some
variation in the magnitude of the residuals was observed, the overall
patterns remained consistent. For example, the residuals for the traffic
density variable classifications, TD_NO and TD_LOW, used for the ambi-
ent average determination were within 3% of each other for morning
and evening tracks. Other variable classifications, such as those for cy-
cling location, showed somewhat larger differences, e.g., CL_SIDEWK
and CL_STRPATH had residuals of−14% and 38% for themorning tracks
and −8.4% and 28% for the evening tracks, respectively. These do not
however, change the overall message for the variables. For a compre-
hensive comparison, see Fig. S7 and Table S2.

4. Discussion

This exploratory work is one of the first studies (and the first in
Germany) that investigated the differences in environmental variables
affecting the PNC that a cyclist is exposed to quantitatively. Many of
these results confirm what we may intuitively hypothesize,
e.g., higher traffic density leads to higher PNC or cycling through green
spaces reduces the PNC that a cyclist is exposed to; but show surpris-
ingly large variations due to very local factors. For example, the pres-
ence of one or more buses, mopeds, or trucks leads to increases in PNC
of N30% relative to the ambient average. Factors such as traffic density
and the event variables are mutually reinforcing, more so than street
type and the event variables which are also related. An evaluation of
the relative frequency of event occurrences by traffic density classifica-
tion shows that, considering the total number of counts within a traffic
density category, there tends to be an increasing presence of buses,
mopeds, medium vehicles, and trucks as traffic density increases. For
example, from low to high traffic density, the relative amount of total
counts for one or more buses increases from 6.7% to 24%. For mopeds
and trucks the increase is 1.3 to 3.8% and 6.8% to 22%, respectively for
low to high traffic density (see also Fig. S9).

Cycle paths that are located on the street also result in a 32% higher
PNC than the ambient average, while cycle paths removed from the
street and located on a shared pedestrian-cyclist sidewalk reduce PNC
by 11% relative to the ambient average. The proximity to traffic and
the overall amount and type of vehicular traffic have a significant influ-
ence on PNCs. The magnitude of influence of these types of factors
should be considered when planning infrastructure, but could also be
used by individuals to plan transit routes to minimize exposure to PM.

To compare with this work, a study that evaluated exposure to par-
ticles in 11 cities in theNetherlands cited an overall mean of 24,329 par-
ticles cm−3 for their bicycle measurements, with large variations
observed within and between cities and sampling days (particle num-
ber concentration measured with a TSI CPC) (Boogaard et al., 2009).
The mean value in this study was 7680 particles cm−3 (standard devia-
tion: 3260 to 18,070 particles cm−3) (PNC measured with a DiSCmini).
Average bicycle trip PNCs were 22,660 particles cm3 for a study con-
ducted in Basel, Switzerland also using a DiSCmini (Ragettli et al.,
2013). A study in Christchurch, NZ reported median PNC of 31,414 par-
ticles cm−3 and 16,641 particles cm−3 for on road and off road cyclists,
respectively, using a TSI CPC (Kingham et al., 2013). The median PNC of
this study was substantially lower at 7020 particles cm−3. These com-
parisons show that overall mean and median particle number concen-
trations in Berlin were somewhat lower than those recorded in other
cities. Our results indicate that even for cities with relatively moderate
particulate levels, the specific location and proximity to vehicles
makes a measurable difference to exposure rates.

A limited number of studies evaluated the effect of different vari-
ables, such as environment or cycling location and the effect these had
on particle number concentrations. In a study evaluating the difference
of bicycle commuting routes in Basel, Switzerland – one along main
roads, and the other away from main roads – results showed that
daily UFP exposure could be reduced by half if main roads were avoided
(Ragettli et al., 2013). While we do not evaluate daily exposure in this
study, we can compare the relative percent difference in PNC residuals
between cycling on main roads (ST_MAINRD) to cycling on residential
streets (ST_RESID), for which we found a decrease of ca. 36%. While
this is similar to Ragettli et al. (2013), these values reflect only differ-
ences in PNC during cycling, whereas their measurements spanned
24 h, of which the commuting routes were only a small contribution
in termsof time, although likely a large contribution to overall exposure.

The 11 cities study from the Netherlands evaluated the percent
change in particle number concentration for a variety of predictor
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variables during their occurrence relative to the total observation pe-
riod. This is most similar to the approach taken here among existing
studies, and one of the only other studies to quantitatively assess the ef-
fect of multiple variables influencing PNC. They observed an 11% in-
crease for cycling on an on-road bicycle lane (lane separated from
road vehicles by line marking only), and a smaller increase of 8% for cy-
cling on a bike path for cyclists that is parallel but unattached to the road
(Boogaard et al., 2009). In our study, we observed an increase of 32% in
the cycling location variables for a cycle path on the street
(CL_STRPATH), and a decrease of −11% for a cycle path on sidewalk
(CL_SIDEWK) relative to the average ambient level. The larger increase
relative to the estimated background in our results may reflect the dif-
ference in methods, but could also be attributed to the amount of traffic
on those routes where the cycle path is located on the street. That we
see a decrease for cycle paths located on the sidewalk, whereby
Boogaard et al. (2009) see a similar magnitude increase could be at-
tributed to a number of factors, including differences in infrastruc-
ture between the countries/cities in terms of the distance of the
sidewalk from the road, a variation in the type of road and/or traffic
density for which cycle paths are placed on the sidewalk, etc. Among
other comparable variables that they investigated were the increase
resulting from passing mopeds (58%) and while waiting for traffic
lights (10%) (Boogaard et al., 2009). Here we observed an increase
of 38% owing to presence of mopeds (MOPED_1) and a 35% increase
for waiting at traffic lights relative to the ambient average
(ENV_TRAFLIGHT). The general consistency in these results from dif-
ferent cities indicates that such factors are likely to have similar ef-
fects in other cities as well.

These results, summarized in Table 2, highlight the substantial dif-
ferences in particle number concentrations that exist over small scales,
both temporally and spatially. These variations have significant implica-
tions for cyclists, but also for other urban citizens and both their activity
and their transport choices. From these results we can conclude that in-
frastructure choices – for example, in terms of where and how cycling
lanes are built – as well as their proximity to traffic (emissions sources)
will have a large effect on the particle number concentrations that cy-
clists are exposed to. Furthermore, the traffic mix in the city and the
proximity of these vehicles to cyclists can exacerbate short-term expo-
sure to higher concentrations. The extensive number of variables inves-
tigated and quantified provides a wealth of information for possible
consideration in urban planning. Results, while collected by bicycle,
have direct implications for city dwellers' exposure rates due to local
sources for a full range of activities, including walking and a range of
recreational activities. While the general conclusions from this study
are likely applicable in other cities given the general consistency of lim-
ited comparisons available, with variations in magnitude owing to local
conditions, such as built environment and local geography expected,
further such studies would allow for a better understanding of the full
transferability of the results among cities. In terms of the built environ-
ment, the differences in thewidth and height of street canyons from the
surrounding buildings would affect dispersion and thereby the PNC
measured. This was not a variable that was classified in this study but
could add additional information to future work. The lack of nearby sta-
tionarymeasurement site(s) with equivalent measurements was a lim-
itation that was overcome by the development of an alternative
background assessment method. However, future studies would be
served by having such measurements available. The rapid changes in
ultra-fine particle concentrations should be taken into account if a
stationary site is used. The approach of non-prescribed bicycling
routes and the resulting broad variability in locations for the differ-
ent days measured results in a less consistent dataset. The local back-
ground correction also limits any comparisons across regions of the
city. This research is therefore a more exploratory study. Further-
more, the evaluation of video data is time consuming and may in-
clude some inaccurate classifications or subjectivity as it is carried
out by individuals. This will likely not influence the outcome with a
sufficiently large data set and clear classification guidelines, as was
the aim here. Other options to address these issues would be auto-
mated video evaluation or possible crowd-sourcing. Finally, similar
measurements carried out during other seasons would add value to
such a dataset.

5. Conclusions

This exploratory study quantifies the effect of nearby pollution
sources in urban areas, with a particular focus on quantifying the effects
of a wide range of variables – cycling location, environment, presence
and density traffic and vehicle types – on the particle number concen-
trations bicyclists are exposed to. These results have implications, not
just for cyclists, but also for pedestrians and urban infrastructure more
generally because the differences in local pollution levels are found to
be quite large. The results show that buses (BUS_1) and trucks
(TRUCK_1) have a larger contribution to PNC (39% and 41% increase
over the ambient average, respectively) than cars (CAR_1, 12% increase
and CAR_2, 32% increase over the ambient average). The overall traffic
density also makes a difference to PNC the impact of low to high traffic
density ranging from a 16% to 46% increase relative to the ambient aver-
age PNC, respectively. Furthermore, increased PNC for crossing intersec-
tions (ENV_INTERSEC, +38%), and being on cycle paths that are part of
themain roadway (CL_STRPATH,+32%) also have a quantifiable impact
on particulate matter exposure. These results are policy relevant and
have implications for how we plan and build cycling infrastructure.
For example, in order to minimize the exposure of cyclists to ambient
particulate matter, cycle routes would ideally be constructed to avoid
main roads, especially those with high traffic densities and/or routes
with significant usage by larger trucks and buses. Shared bus and bicycle
lanes are likely not an ideal option given these findings. Furthermore,
where possible, the routes should pass through green spaces that fur-
ther remove cyclists from traffic emissions and contribute air pollution
filtering effects (e.g., Abd El Aziz et al., 2015; Selmi et al., 2016), as
shown in this study. Current cycle infrastructure is often along main
thoroughfares, especially in dense urban areas (e.g., Boogaard et al.,
2009). The often conflicting priorities of creating the most direct routes
and those that might reduce exposure by avoiding main thoroughfares
will be a challenge to consider. The quantification of the impact of
local traffic on bicyclists can be extrapolated to pedestrians and more
generally, to outdoor activity within the urban area. A variety of factors
will need to be considered in such urban planning to be able to create
infrastructure that fits the needs of the different groups in a city while
also, ideally, taking into account the implications for exposure to air pol-
lution. We hope that by providing information on a number of the fac-
tors influencing air pollution PNC here, that such factors can be
considered when evaluating the potential effectiveness of policies
under consideration. The identification of the magnitude of impact of
local traffic and road proximity can allow for evaluation of options for
cities that includes the impact on human health for different develop-
ment options.
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